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Introduction

The issue of nonreproducibility has become a pervasive chal-
lenge across life sciences, raising concerns about the reliabil-
ity of research findings. It has been argued that current
practices may lead to a substantial proportion of false-
positive results in published research findings under certain
conditions [1]. This concern regarding inflated error rates
and decreased reproducibility, resulting from probability pyr-
amiding, was highlighted decades ago, emphasizing the need
for independent replication in research [2]. While psychology
and social sciences have faced notable criticism for low repro-
ducibility rates, medical research is not exempt. Highly cited
research studies often report substantial initial effects that are
contradicted or diminished in follow-up investigations [3].
For instance, the large-scale “Reproducibility Project: Cancer
Biology” found consistent results in just 26% of attempted
replications, with replication effect sizes averaging 85%
smaller than initially reported [4].

Central to the reproducibility crisis is the growing com-
plexity of modern research designs, especially in clinical trials
and epidemiology. Trials often feature multiple endpoints,
treatment arms, or exploratory analyses, whereas epidemio-
logical studies rely on large datasets with numerous variables,
each introducing the potential for multiple comparisons.
Without proper statistical adjustments, this multiplicity
increases the risk of false positives, thereby undermining the
reliability of the findings. These risks are compounded by
academia’s “publish or perish” culture, which favors novel,
significant results over rigorous, reproducible work. Selective
reporting, p-hacking, and inadequate multiple-hypothesis
adjustments distort the evidence base, waste resources, and
can lead to misguided clinical decisions [5].

Multiplicity-related issues are particularly concerning in
pharmaceutical development, where late-stage trial failures
result in significant financial and time losses [3]. Addressing
these challenges requires robust statistical practices, prespeci-
fied analytical plans, and appropriate corrections for multiple
comparisons. Despite long-standing calls for methodological

rigor, the application of these adjustments remains inconsis-
tent, even in high-impact journals.

This Opinion paper examines the prevalence and impact of
multiplicity-related errors in clinical and epidemiological re-
search. By identifying key gaps in current practices, we pro-
pose actionable solutions to enhance the reproducibility and
reliability of scientific findings.

Muiltiplicity in clinical trials

Multiplicity is an inherent challenge in most randomized clin-
ical trials (RCTs). Sponsors often aim to maximize insights
from a single study, leading to complex designs that test mul-
tiple doses, regimens, endpoints, treatment arms, predictors,
subgroups, or populations, often repeated over time. As John
Tukey noted in his 1977 paper, “once multiple questions are
to be asked, there will be pressures, some ethical in nature,
to concentrate upon those questions for which the results
appear most favorable” [6].

While multi-arm trials enhance efficiency by reducing the
sample size required compared to separate trials, they also
amplify the risk of false positives. For instance, in a trial with
multiple comparisons, an unadjusted significance level of
a=0.05 can lead to substantial inflation of the type I error—
a study testing five hypotheses has approximately a 23%
probability of producing at least one false positive. A system-
atic review of 1351 randomized trials published in PubMed
in a single month of 2012 revealed that 79% were parallel-
group trials, with 14% involving three arms and 7% having
four or more arms [7]. Despite the increasing prevalence of
multi-arm RCTs, inadequate correction for multiplicity
remains a persistent issue, undermining the validity of
reported findings.

Prespecifications of analyses to prevent
p-hacking

Addressing multiplicity during the design phase of clinical tri-
als is essential to avoid bias, particularly p-hacking, where
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investigators selectively adopt analysis strategies based on
preliminary data review [8]. Established guidelines such as
the International Council for Harmonisation (ICH) E9
guideline, Statistical Principles for Clinical Trials, or the
SPIRIT (Standard Protocol Items: Recommendations for
Interventional Trials) stress the need to prespecify statistical
methods but provide limited guidance on how analyses
should be conducted. To enhance transparency and prevent
p-hacking, Kahan et al. [8] proposed the pre-SPEC frame-
work, which includes (i) prespecifying analyses before recruit-
ment, (ii) defining a single primary analysis strategy, (iii)
creating detailed plans for each analysis, (iv) providing enough
detail for independent replication, and (v) ensuring adaptive
strategies follow predetermined decisions. Researchers can en-
sure rigorous, transparent, and reproducible trial analyses by
incorporating these measures.

Confirmatory versus exploratory studies

The distinction between confirmatory and exploratory stud-
ies should be established early. Confirmatory studies focus on
a small set of predefined primary outcomes, with a statistical
analysis plan that accounts for family-wise error rate
(FWER), P-value adjustments, and transparent reporting [9].
On the other hand, exploratory studies are hypothesis-
generating and may not require stringent multiple-testing
adjustments provided that findings are clearly presented as
preliminary hypotheses to be validated by subsequent confir-
matory studies. Unfortunately, exploratory results are fre-
quently presented with stronger claims than warranted,
leading to overstated conclusions and elevated type I error
risks. Therefore, even in exploratory trials, type I error risks
should be explicitly acknowledged, and transparent reporting
of FWER is advisable [9].

When to adjust for multiple testing

Multiplicity adjustments are critical in studies with: (i) multi-
ple endpoints (e.g. for example, three measures of cardiovas-
cular outcomes); (ii) repeated measures over time (e.g. at
three, six, and 12 months); or (iii) multiple treatment arms
(e.g. different regimens compared to a shared control arm)
[9]. Adjustments are necessary when findings are interpreted
collectively for clinical recommendations. For example, in a
trial evaluating different schedules or doses of treatment com-
pared to shared control, each experimental arm is part of a
family of comparisons and contributes to a broader question,
indicating the necessity for multiplicity adjustments [10].
However, adjustments may not be needed if distinct hypothe-
ses inform separate claims of effectiveness. Additional consid-
erations include trials addressing controversial topics or those
involving multiple treatments from the same manufacturer,
where uncorrected multiplicity may bias conclusions [10].

Multiple endpoints

In trials with coprimary endpoints, where success depends on
demonstrating treatment effects across all outcomes, type I
error is not inflated, and multiplicity adjustments are unnec-
essary. These suggestions are consistent with regulatory
guidelines for trials aiming for marketing authorization.
However, adjustments are required when trials allow
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multiple pathways to success—where efficacy in any one out-
come is sufficient [11].

Related treatments typically demand adjustments for mul-
tiple treatment groups, while unrelated treatments may not
[9, 10]. Strategies to mitigate type I errors include prioritizing
a single primary outcome, using composite outcomes (though
challenging due to varying importance to patients), or apply-
ing global tests that sum standardized effect sizes. The win ra-
tio approach offers an alternative by prioritizing critical
components, such as cause-specific mortality, and calculating
effectiveness through patient-pair comparisons [10, 12].

Adjustments for multiple testing in
contemporary clinical trials

Despite established guidelines, implementing multiple-testing
adjustments in clinical trials remains suboptimal. A 2012 re-
view of multi-arm trials found that only 62% of studies re-
quiring adjustments accounted for multiplicity, with 38%
using ordered comparisons and 18% employing single-step
procedures, such as the Bonferroni method. Alarmingly, 15%
of trials with planned adjustments failed to report them in fi-
nal publications, suggesting selective reporting [13]. Our re-
view of RCTs and high-profile publications (2010-22)
confirms the inconsistent use of correction methods across
disciplines, which contributes to inflated Type I error rates
and irreproducible findings (Table 1).

Multiplicity adjustments remain inconsistently applied
across many research areas. In specific fields, including neurol-
ogy and psychiatry, multiple primary outcomes are necessary
to evaluate the effectiveness of an intervention, as long-term
mental health conditions require more than one outcome to
characterize the effects of treatment sufficiently. Of 55 RCTs
on depression (2007-8), only 5.8% accounted for multiplicity,
despite most trials reporting multiple primary and secondary
outcomes [14]. Similarly, in a review of 209 neurology and
psychiatry RCTs (2011-14), 29% involved multiple primary
outcomes, yet 75% lacked adjustments; the Bonferroni correc-
tion was the most common method when applied [15]. The re-
view was based on clinical trials published in high-impact
journals (The New England Journal of Medicine, The Lancet,
The American Journal of Psychiatry, JAMA Psychiatry, The
Lancet Neurology, and Neurology) and had multiplicity
has been addressed, some studies would not remain
significant [15].

Trials in pain research frequently neglect adjustments.
A 2014 review of 161 RCTs revealed that only 52% specified
a primary analysis, and 45% applied corrections. None of
the articles that neglected to adjust for multiple analyses ac-
knowledged it in their Methods, Results, or Discussion sec-
tions. The 15 studies that reported statistical adjustments
used mainly the Holm (7 = 3 studies), Bonferroni (n=2), and
Hochberg (7=2) methods [16]. A systemic review of non-
pharmacological pain trials with multiple comparisons found
that only 21% of RCTs employed statistical adjustments, pri-
marily using the Bonferroni correction [17].

A systematic review of 388 surgical RCTs (2008-20) iden-
tified multiplicity in 175 trials. Adjustments were performed
in only 20%, primarily using Bonferroni and Tukey methods.
Reporting bias affected 51.7% of studies, undermining reli-
ability [18].

Multiplicity is especially critical in imaging, where studies
test dozens of hypotheses. A systematic review of PET/CT
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biomarker studies (2000-13) found 15 eligible studies, with
the number of hypotheses ranging between 8 and 102. Only
one study applied adjustments for multiple hypothesis test-
ing, and three studies included validation of their results. The
authors estimated an average type-I error probability of 76 %
(34%-99%), with most published results failing to reach sta-
tistical significance [19]. Similarly, unadjusted P-values re-
main an issue in fMRI research: in the Brede database of
neuroimaging papers, 49% of studies (n=1705 articles) pub-
lished uncorrected P-values [20].

In ophthalmology, only 14% of abstracts at a major con-
ference with more than five hypothesis tests reported correc-
tions [21]. Similarly, a systematic review of otolaryngology
studies found that 72% involved multiple testing, but only
10% addressed it, primarily using Bonferroni corrections.
The authors estimated a 41% chance of false positives and
noted that 18% of reported P-values might be spurious [22].

Multiplicity challenges in pragmatic trials

Pragmatic trials, designed to evaluate real-world effective-
ness, often include multiple primary outcomes but rarely ap-
ply corrections. Only 10% of such trials (2014-19) reported
adjustments. In a review of high-impact journals, inconsisten-
cies were noted: 25% of trials adjusted when all outcomes
had to show effectiveness, but only 35% adjusted when not
all outcomes needed to succeed. Opinions among statisticians
were similarly divided, with adjustments for multiple primary
outcomes seen as critical by some but less essential for sec-
ondary outcomes or subgroup analyses [23, 24].

Multiplicity challenges in high-impact publications
Even high-profile journals frequently overlook multiplicity
adjustments, leading to inflated type I errors. Benjamini and
colleagues investigated a batch of papers published in the
New England Journal of Medicine (NEJM) between 2000
and 2004. Out of the 60 papers, 47 (78.3%) had no multi-
plicity adjustments, although they should have had in some
form [25]. The trend remained, as 80% of papers published
between 2000 and 2010 in NEJM investigating multiple end-
points ignored the issue of multiplicity. In multi-arm clinical
trials published in 2012 by four top-quality medical journals
(British Medical Journal, The Lancet, New England Journal
of Medicine, and PLoS Medicine), 51% of studies contained
adjustment for multiplicity, with a slightly higher proportion
of exploratory trials (55%) compared to confirmatory studies
(46%). The most common adjustment methods were the
gatekeeping/hierarchical/closed approach (24%) and the
Bonferroni correction (14%) [9]. A study published in 2020
investigating cardiovascular randomized trials in six high-
impact journals found that out of 300 studies with multiplic-
ity, only 28% (85 studies) adjusted the results for multiple
comparisons. Interestingly, larger trials were less likely to
make adjustments [26].

Multiplicity affecting subgroup analyses

The treatment effect of a new intervention may vary among
different segments of the study population. Subgroup analy-
ses may assess the safety profiles and the consistency of the
treatment effect across subgroups and detect effects within a
subgroup in an otherwise nonsignificant trial. Subgroup anal-
yses may be predefined or a posteriori and may be delineated
as confirmatory, exploratory, post hoc, and data-driven sub-
group identifications [27, 28]. Subgroup analyses carry a

high risk of false positives, especially when numerous com-
parisons are made. A review of 89 cardiovascular studies
showed more common subgroup analyses in trials with non-
significant primary results, highlighting potential “fishing for
significance.” Only 2% of these trials applied adjustments
[29]. A meta-analysis of 64 RCTs with 117 subgroup claims
found that only one study used the Bonferroni-Holm proce-
dure, while 39.3% lacked statistical evidence for their claims
[30]. Guidelines recommend corrections in subgroup-based
comparisons but suggest flexibility when subgroups are
nested within treatment arms [31].

Recommended adjustment methods

Effective control of multiplicity is essential to ensure the va-
lidity of clinical trial results and prevent erroneous conclu-
sions about treatment efficacy. Adjustment methods must
align with the specific clinical and statistical context, consid-
ering endpoint priorities, population differences, and correla-
tions between hypotheses. Selecting the optimal approach
requires extensive trial simulations to balance sensitivity and
specificity.

Multiplicity adjustment strategies in clinical trials generally
fall into two extremes: “no adjustment at all” or excessively
strict “no error at all” approaches (Table 1). The Bonferroni
correction remains the most widely used method for control-
ling the family-wise error rate (FWER). However, it is often
criticized for being overly conservative, increasing the risk of
false negatives, and potentially overlooking meaningful
effects. Stepwise methods, such as Holm’s procedure (adjust-
ing significance thresholds sequentially) and Hochberg’s
method (ranking hypotheses to set critical values), offer a
more balanced approach by controlling type I error rates
while maintaining statistical power. These methods are in-
creasingly preferred for their ability to balance stringency and
flexibility [32].

False discovery rate (FDR) adjustments provide an alterna-
tive approach for large-scale studies involving numerous
hypotheses, such as genome-wide association studies. FDR-
based methods control the proportion of false positives
among significant results, yielding g-values that balance sen-
sitivity and specificity. These approaches are highly effective
for preserving statistical power while minimizing false discov-
eries [33]. Our prior publication details frequently used
adjustment methods, including FWER and FDR-based tech-
niques [32].

Moreover, accessible tools for multiplicity correction offer
researchers practical means to maintain statistical rigor. One
freely available example is “multipletesting.com,” developed
by the authors [32]. This intuitive tool requires no coding skills
or specialized expertise, making a multiplicity correction
broadly accessible to many users. Additional resources include
publicly available FDR adjustment calculators and standard
software functions, such as the p.adjust function in R.

Gatekeeping procedures handle multiplicity in scenarios
where hypotheses are hierarchically or logically related.
Primary endpoints are tested first, with secondary endpoints
evaluated only if primary tests are significant, safeguarding
statistical integrity across multiple comparisons. Methods
such as Bonferroni and Holm are common in gatekeeping
frameworks, with variants like serial, parallel, and tree-
structured approaches tailored for complex trial designs.
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Clinical examples show how gatekeeping methods address
specific trial design challenges [34, 35].

In drug development, weighted FDR methods account for
the relative importance of different endpoints. They achieve
greater power by prioritizing primary endpoints and assigning
weights to secondary outcomes than traditional hierarchical
gatekeeping. These weighted procedures are beneficial in phase
IT trials where primary endpoints may have low power, en-
hancing secondary outcome discovery while maintaining rigor-
ous multiplicity control. Such methods apply across diverse
research fields where hypotheses vary in importance [36].

Multiplicity in observational epidemiology

Observational epidemiology, which relies on biomarkers or
questionnaires to assess exposures, struggles with reproduc-
ibility, compounded by high-throughput technologies like
transcriptomics and metabolomics [37]. The exposome
concept, encompassing all environmental and biological
exposures, is vital to understanding gene—environment inter-
actions. Nevertheless, the number of variables in exposome
studies often leads to high type I error rates if multiplicity is
not addressed [38].

Debate persists over whether multiplicity adjustments are
needed in observational studies. Rothman [39] argued
against routine adjustments, warning that they could mask
important findings by increasing type II errors—particularly
in exploratory contexts. However, Rothman’s viewpoint
assumes researchers transparently present exploratory find-
ings without overstating their significance, which is fre-
quently not the practice case, as transparency regarding
multiplicity is often lacking in publications [38]. While geno-
mic studies (e.g. Genome-wide association studies) routinely
employ multiplicity adjustments, this is not the norm in
broader epidemiology. A 1998 review of articles in the
American Journal of Epidemiology and the American Journal
of Public Health revealed a ~20% type 1 error rate, far ex-
ceeding the expected 5% [40].

Nutritional epidemiology particularly exemplifies these chal-
lenges. Nonrandomized observational studies in this field often
employ flexible statistical adjustments and Food Frequency
Questionnaires (FFQs), which can lead to questionable valid-
ity. This practice has resulted in almost every food ingredient
being linked to cancer risk at some point, despite most findings
being implausible or irreproducible [41]. Small effect sizes,
confounding, measurement errors, and unadjusted multiplicity
exacerbate this issue. Critics argue that focusing on single
ingredients in observational or small-scale randomized trials
will unlikely advance the field [42]. Instead, large-scale trials
evaluating dietary patterns, such as the PREDIMED trial on
the Mediterranean diet, offer a more reliable approach to un-
derstanding complex nutritional impacts [43].

Transparency in observational studies can be enhanced by
explicitly reporting every planned comparison, including
measured exposures, outcomes, and their inter-relationships.
While the actual number of tests performed can be challeng-
ing to capture—especially in exploratory contexts—research-
ers should strive to track all analyses attempted, even those
ultimately excluded from the final report [44]. Preregistration
of a Statistical Analysis Plan (SAP) further strengthens trans-
parency by clearly distinguishing confirmatory from explor-
atory hypotheses, mitigating inflated effect sizes, and
selective reporting (as well as HARKing—hypothesizing after
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results are known) [45]. Recent metascientific evidence
strongly supports the use of preregistration and Registered
Reports, confirming that these practices effectively mitigate
systematic and publication bias by enabling peers to critically
evaluate how rigorously scientific claims have been tested
[46]. Despite occasional criticism—such as preregistration
discouraging exploratory research or inadvertently signaling
study quality without proper scrutiny—these concerns lack
strong empirical backing and often arise from misunder-
standings about the goal of preregistration [46]. Thus, pre-
registration addresses Rothman’s concerns by transparently
delineating exploratory findings without necessarily discour-
aging exploration itself.

Multiplicity affecting meta-analyses

Systematic meta-analyses effectively summarize accumulated
knowledge, aiding clinicians and policymakers. However,
multiplicity issues must be addressed explicitly. Detailed pre-
specification of decision rules for managing multiple groups,
time points, and analyses in meta-analysis protocols prevents
selective reporting or cherry-picking significant findings from
primary studies. Observational studies, often exploratory by
nature, are particularly prone to selective inclusion and
inflated biases. Unfortunately, observational studies with
multiple comparisons, conducted without corrections for
multiple hypotheses, will produce meta-analyses with unreli-
able results [37]. Meta-analyses based on papers with a risk
of containing false positives should be treated with care until
the credibility of the underlying primary studies is evaluated
or further confirmatory studies are conducted.

Conclusions

The reproducibility crisis highlights the urgent need for rigor-
ous statistical practices. Even RCTs, the methodological gold
standard, are susceptible to multiplicity issues. Clear prespe-
cification of analytical methods, proper correction for multi-
plicity, and transparent reporting are essential. Adopting
these practices can minimize false-positive findings, enhance
reproducibility, and provide a more informed basis for
evidence-based clinical and policy decisions.
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